Connectto Google Drive, Discord, Google Docs MCP Servers
Create powerful AI workflows by connecting multiple MCP servers including Google Drive, Discord, Google Docs for enhanced automation capabilities in Klavis AI.
Google Drive
Google Drive is a cloud storage service
Available Tools:
- google_drive_search_documents
- google_drive_search_and_retrieve_documents
- google_drive_get_file_tree_structure
Discord
Discord is a VoIP and instant messaging social platform
Available Tools:
- discord_get_server_info
- discord_list_members
- discord_create_text_channel
- +6 more tools
Google Docs
Google Docs is a word processor included as part of the free, web-based Google Docs Editors suite
Available Tools:
- google_docs_get_document_by_id
- google_docs_get_all_documents
- google_docs_insert_text_at_end
- +2 more tools
Quick Setup Guide
Follow these steps to connect your AI agents to these MCP servers
Create Your Account
Sign up for KlavisAI to access our MCP server management platform.
Configure Connections
Add your desired MCP servers to your AI client and configure authentication settings.
Test & Deploy
Verify your connections work correctly and start using your enhanced AI capabilities.
Integrate in minutes, Scale to millions
View Documentationimport json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
google_drive_tools = klavis_client.mcp_server.list_tools(
server_url=google_drive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
discord_tools = klavis_client.mcp_server.list_tools(
server_url=discord_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(google_drive_tools)
all_tools.extend(discord_tools)
all_tools.extend(google_docs_tools)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}
]
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=all_tools if all_tools else None
)Code Examples for claude
import os
import json
from anthropic import Anthropic
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
user_message = "Your message here"
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
google_drive_tools = klavis_client.mcp_server.list_tools(
server_url=google_drive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
discord_tools = klavis_client.mcp_server.list_tools(
server_url=discord_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
# Combine all tools
all_tools = []
all_tools.extend(google_drive_tools.tools)
all_tools.extend(discord_tools.tools)
all_tools.extend(google_docs_tools.tools)
messages = [
{"role": "user", "content": user_message}
]
response = anthropic_client.messages.create(
model=CLAUDE_MODEL,
max_tokens=4000,
messages=messages,
tools=all_tools
)import Anthropic from '@anthropic-ai/sdk';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const CLAUDE_MODEL = "claude-3-5-sonnet-20241022";
const userMessage = "Your message here";
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get tools from all MCP servers
const google_driveTools = await klavisClient.mcpServer.listTools({
serverUrl: google_driveMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Anthropic,
});
const discordTools = await klavisClient.mcpServer.listTools({
serverUrl: discordMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Anthropic,
});
const google_docsTools = await klavisClient.mcpServer.listTools({
serverUrl: google_docsMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Anthropic,
});
// Combine all tools
const allTools = [
...google_driveTools.tools,
...discordTools.tools,
...google_docsTools.tools
];
const response = await anthropic.messages.create({
model: CLAUDE_MODEL,
max_tokens: 4000,
messages: [{ role: 'user', content: userMessage }],
tools: allTools,
});Code Examples for gemini
import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
google_drive_tools = klavis_client.mcp_server.list_tools(
server_url=google_drive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
discord_tools = klavis_client.mcp_server.list_tools(
server_url=discord_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(google_drive_tools.tools)
all_tools.extend(discord_tools.tools)
all_tools.extend(google_docs_tools.tools)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=user_message,
config=genai.types.GenerateContentConfig(
tools=all_tools,
),
)import { GoogleGenAI } from '@google/genai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const ai = new GoogleGenAI({ apiKey: process.env.GOOGLE_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const userMessage = "Your query here";
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get tools from all MCP servers
const google_driveTools = await klavisClient.mcpServer.listTools({
serverUrl: google_driveMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Gemini,
});
const discordTools = await klavisClient.mcpServer.listTools({
serverUrl: discordMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Gemini,
});
const google_docsTools = await klavisClient.mcpServer.listTools({
serverUrl: google_docsMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Gemini,
});
// Combine all tools
const allTools = [
...google_driveTools.tools,
...discordTools.tools,
...google_docsTools.tools
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: userMessage,
tools: allTools,
});Code Examples for langchain
import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_client = MultiServerMCPClient({
"google drive": {
"transport": "streamable_http",
"url": google_drive_mcp_instance.server_url
},
"discord": {
"transport": "streamable_http",
"url": discord_mcp_instance.server_url
},
"google docs": {
"transport": "streamable_http",
"url": google_docs_mcp_instance.server_url
}
})
tools = asyncio.run(mcp_client.get_tools())
agent = create_react_agent(
model=llm,
tools=tools,
)
response = asyncio.run(agent.ainvoke({
"messages": [{"role": "user", "content": "Your query here"}]
}))import { KlavisClient, Klavis } from 'klavis';
import { MultiServerMCPClient } from "@langchain/mcp-adapters";
import { ChatOpenAI } from "@langchain/openai";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
// Initialize clients
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const llm = new ChatOpenAI({ model: "gpt-4o-mini", apiKey: process.env.OPENAI_API_KEY });
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const mcpClient = new MultiServerMCPClient({
"google drive": {
transport: "streamable_http",
url: google_driveMcpInstance.serverUrl
},
"discord": {
transport: "streamable_http",
url: discordMcpInstance.serverUrl
},
"google docs": {
transport: "streamable_http",
url: google_docsMcpInstance.serverUrl
}
});
const tools = await mcpClient.getTools();
const agent = createReactAgent({
llm: llm,
tools: tools,
});
const response = await agent.invoke({
messages: [{ role: "user", content: "Your query here" }]
});Code Examples for llamaindex
import os
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from llama_index.tools.mcp import (
BasicMCPClient,
get_tools_from_mcp_url,
aget_tools_from_mcp_url,
)
from llama_index.core.agent.workflow import FunctionAgent, AgentWorkflow
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_drive_tools = await aget_tools_from_mcp_url(
google_drive_mcp_instance.server_url,
client=BasicMCPClient(google_drive_mcp_instance.server_url)
)
discord_tools = await aget_tools_from_mcp_url(
discord_mcp_instance.server_url,
client=BasicMCPClient(discord_mcp_instance.server_url)
)
google_docs_tools = await aget_tools_from_mcp_url(
google_docs_mcp_instance.server_url,
client=BasicMCPClient(google_docs_mcp_instance.server_url)
)
google_drive_agent = FunctionAgent(
name="google_drive_agent",
tools=google_drive_tools,
llm=llm,
)
discord_agent = FunctionAgent(
name="discord_agent",
tools=discord_tools,
llm=llm,
)
google_docs_agent = FunctionAgent(
name="google_docs_agent",
tools=google_docs_tools,
llm=llm,
)
workflow = AgentWorkflow(
agents=[google_drive_agent, discord_agent, google_docs_agent],
root_agent="google_drive_agent",
)import { KlavisClient, Klavis } from 'klavis';
import { mcp } from "@llamaindex/tools";
import { agent, multiAgent } from "@llamaindex/workflow";
import { openai } from "@llamaindex/llm";
// Initialize clients
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Create MCP server connections
const google_driveServer = mcp({
url: google_driveMcpInstance.serverUrl,
verbose: true,
});
const discordServer = mcp({
url: discordMcpInstance.serverUrl,
verbose: true,
});
const google_docsServer = mcp({
url: google_docsMcpInstance.serverUrl,
verbose: true,
});
// Get tools from MCP servers
const google_driveTools = await google_driveServer.tools();
const discordTools = await discordServer.tools();
const google_docsTools = await google_docsServer.tools();
// Create specialized agents
const google_driveAgent = agent({
name: "google_drive_agent",
llm: openai({ model: "gpt-4o" }),
tools: google_driveTools,
});
const discordAgent = agent({
name: "discord_agent",
llm: openai({ model: "gpt-4o" }),
tools: discordTools,
});
const google_docsAgent = agent({
name: "google_docs_agent",
llm: openai({ model: "gpt-4o" }),
tools: google_docsTools,
});
// Create multi-agent workflow
const agents = multiAgent({
agents: [google_driveAgent, discordAgent, google_docsAgent],
rootAgent: google_driveAgent,
});Code Examples for crewai
import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Initialize MCP tools for each server
google_drive_tools = MCPServerAdapter(google_drive_mcp_instance.server_params)
discord_tools = MCPServerAdapter(discord_mcp_instance.server_params)
google_docs_tools = MCPServerAdapter(google_docs_mcp_instance.server_params)
# Create specialized agents for each service
google_drive_agent = Agent(
role="Google Drive Specialist",
goal="Handle all Google Drive related tasks and data processing",
backstory="You are an expert in Google Drive operations and data analysis",
tools=google_drive_tools,
reasoning=True,
verbose=False
)
discord_agent = Agent(
role="Discord Specialist",
goal="Handle all Discord related tasks and data processing",
backstory="You are an expert in Discord operations and data analysis",
tools=discord_tools,
reasoning=True,
verbose=False
)
google_docs_agent = Agent(
role="Google Docs Specialist",
goal="Handle all Google Docs related tasks and data processing",
backstory="You are an expert in Google Docs operations and data analysis",
tools=google_docs_tools,
reasoning=True,
verbose=False
)
# Define collaborative tasks
research_task = Task(
description="Gather comprehensive data from all available sources",
expected_output="Raw data and initial findings from all services",
agent=google_drive_agent,
markdown=True
)
# Create multi-agent crew
crew = Crew(
agents=[google_drive_agent, discord_agent, google_docs_agent],
tasks=[research_task],
verbose=False,
process=Process.sequential
)
result = crew.kickoff()// CrewAI currently only supports Python. Please use the Python example.Code Examples for fireworks-ai
import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
google_drive_tools = klavis_client.mcp_server.list_tools(
server_url=google_drive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
discord_tools = klavis_client.mcp_server.list_tools(
server_url=discord_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(google_drive_tools.tools)
all_tools.extend(discord_tools.tools)
all_tools.extend(google_docs_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = fireworks_client.chat.completions.create(
model="accounts/fireworks/models/llama-v3p1-70b-instruct",
messages=messages,
tools=all_tools
)import Fireworks from 'fireworks-ai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const fireworks = new Fireworks({ apiKey: process.env.FIREWORKS_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
platformName: "Klavis",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
platformName: "Klavis",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
platformName: "Klavis",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get all MCP tools
const google_driveTools = await klavisClient.mcpServer.listTools({
serverUrl: google_driveMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
const discordTools = await klavisClient.mcpServer.listTools({
serverUrl: discordMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
const google_docsTools = await klavisClient.mcpServer.listTools({
serverUrl: google_docsMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
// Combine all tools
const allTools = [
...google_driveTools.tools,
...discordTools.tools,
...google_docsTools.tools
];
const response = await fireworks.chat.completions.create({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
messages: [
{ role: "system", content: "You are a helpful assistant with access to multiple data sources." },
{ role: "user", content: userMessage }
],
tools: allTools,
});Code Examples for together-ai
import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DRIVE,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
discord_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DISCORD,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
google_drive_tools = klavis_client.mcp_server.list_tools(
server_url=google_drive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
discord_tools = klavis_client.mcp_server.list_tools(
server_url=discord_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(google_drive_tools.tools)
all_tools.extend(discord_tools.tools)
all_tools.extend(google_docs_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = together_client.chat.completions.create(
model="meta-llama/Llama-2-70b-chat-hf",
messages=messages,
tools=all_tools
)import Together from 'together-ai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const togetherClient = new Together({ apiKey: process.env.TOGETHER_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const google_driveMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDrive,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const discordMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Discord,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
const google_docsMcpInstance = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.GoogleDocs,
userId: "1234",
connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get all MCP tools
const google_driveTools = await klavisClient.mcpServer.listTools({
serverUrl: google_driveMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
const discordTools = await klavisClient.mcpServer.listTools({
serverUrl: discordMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
const google_docsTools = await klavisClient.mcpServer.listTools({
serverUrl: google_docsMcpInstance.serverUrl,
connectionType: Klavis.ConnectionType.StreamableHttp,
format: Klavis.ToolFormat.Openai,
});
// Combine all tools
const allTools = [
...google_driveTools.tools,
...discordTools.tools,
...google_docsTools.tools
];
const response = await togetherClient.chat.completions.create({
model: "meta-llama/Llama-2-70b-chat-hf",
messages: [
{ role: "system", content: "You are a helpful AI assistant with access to multiple data sources." },
{ role: "user", content: userMessage }
],
tools: allTools,
});Frequently Asked Questions
Everything you need to know about connecting to these MCP servers
Ready to Get Started?
Join developers who are already using KlavisAI to power their AI agents and AI applications with these MCP servers.
Start For Free