Create powerful AI workflows by connecting multiple MCP servers including Asana, Shopify for enhanced automation capabilities in Klavis AI.
Asana is a web and mobile application designed to help teams organize, track, and manage their work. It provides project management tools, task assignment, collaboration features, and progress tracking to boost team productivity
Shopify is a complete commerce platform that lets you start, grow, and manage a business. Manage products, process orders, track customers, and build your online store with powerful e-commerce tools
Follow these steps to connect your AI agents to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to your AI client and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
asana_tools = klavis_client.mcp_server.list_tools(
    server_url=asana_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
shopify_tools = klavis_client.mcp_server.list_tools(
    server_url=shopify_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools)
all_tools.extend(shopify_tools)
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": user_message}
]
        
response = openai_client.chat.completions.create(
    model=OPENAI_MODEL,
    messages=messages,
    tools=all_tools if all_tools else None
)import os
import json
from anthropic import Anthropic
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
user_message = "Your message here"
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
asana_tools = klavis_client.mcp_server.list_tools(
    server_url=asana_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.ANTHROPIC,
)
shopify_tools = klavis_client.mcp_server.list_tools(
    server_url=shopify_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.ANTHROPIC,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(shopify_tools.tools)
messages = [
    {"role": "user", "content": user_message}
]
        
response = anthropic_client.messages.create(
    model=CLAUDE_MODEL,
    max_tokens=4000,
    messages=messages,
    tools=all_tools
)import Anthropic from '@anthropic-ai/sdk';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const CLAUDE_MODEL = "claude-3-5-sonnet-20241022";
const userMessage = "Your message here";
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get tools from all MCP servers
const asanaTools = await klavisClient.mcpServer.listTools({
    serverUrl: asanaMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Anthropic,
});
const shopifyTools = await klavisClient.mcpServer.listTools({
    serverUrl: shopifyMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Anthropic,
});
// Combine all tools
const allTools = [
    ...asanaTools.tools,
    ...shopifyTools.tools
];
const response = await anthropic.messages.create({
    model: CLAUDE_MODEL,
    max_tokens: 4000,
    messages: [{ role: 'user', content: userMessage }],
    tools: allTools,
});import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
asana_tools = klavis_client.mcp_server.list_tools(
    server_url=asana_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
shopify_tools = klavis_client.mcp_server.list_tools(
    server_url=shopify_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(shopify_tools.tools)
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=user_message,
    config=genai.types.GenerateContentConfig(
        tools=all_tools,
    ),
)import { GoogleGenAI } from '@google/genai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const ai = new GoogleGenAI({ apiKey: process.env.GOOGLE_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const userMessage = "Your query here";
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get tools from all MCP servers
const asanaTools = await klavisClient.mcpServer.listTools({
    serverUrl: asanaMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Gemini,
});
const shopifyTools = await klavisClient.mcpServer.listTools({
    serverUrl: shopifyMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Gemini,
});
// Combine all tools
const allTools = [
    ...asanaTools.tools,
    ...shopifyTools.tools
];
const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: userMessage,
    tools: allTools,
});import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_client = MultiServerMCPClient({
    "asana": {
        "transport": "streamable_http",
        "url": asana_mcp_instance.server_url
    },
    "shopify": {
        "transport": "streamable_http",
        "url": shopify_mcp_instance.server_url
    }
})
tools = asyncio.run(mcp_client.get_tools())
agent = create_react_agent(
    model=llm,
    tools=tools,
)
response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))import { KlavisClient, Klavis } from 'klavis';
import { MultiServerMCPClient } from "@langchain/mcp-adapters";
import { ChatOpenAI } from "@langchain/openai";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
// Initialize clients
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const llm = new ChatOpenAI({ model: "gpt-4o-mini", apiKey: process.env.OPENAI_API_KEY });
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const mcpClient = new MultiServerMCPClient({
    "asana": {
        transport: "streamable_http",
        url: asanaMcpInstance.serverUrl
    },
    "shopify": {
        transport: "streamable_http",
        url: shopifyMcpInstance.serverUrl
    }
});
const tools = await mcpClient.getTools();
const agent = createReactAgent({
    llm: llm,
    tools: tools,
});
const response = await agent.invoke({
    messages: [{ role: "user", content: "Your query here" }]
});import os
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from llama_index.tools.mcp import (
    BasicMCPClient,
    get_tools_from_mcp_url,
    aget_tools_from_mcp_url,
)
from llama_index.core.agent.workflow import FunctionAgent, AgentWorkflow
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
asana_tools = await aget_tools_from_mcp_url(
    asana_mcp_instance.server_url, 
    client=BasicMCPClient(asana_mcp_instance.server_url)
)
shopify_tools = await aget_tools_from_mcp_url(
    shopify_mcp_instance.server_url, 
    client=BasicMCPClient(shopify_mcp_instance.server_url)
)
asana_agent = FunctionAgent(
    name="asana_agent",
    tools=asana_tools,
    llm=llm,
)
shopify_agent = FunctionAgent(
    name="shopify_agent",
    tools=shopify_tools,
    llm=llm,
)
workflow = AgentWorkflow(
    agents=[asana_agent, shopify_agent],
    root_agent="asana_agent",
)import { KlavisClient, Klavis } from 'klavis';
import { mcp } from "@llamaindex/tools";
import { agent, multiAgent } from "@llamaindex/workflow";
import { openai } from "@llamaindex/llm";
// Initialize clients
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Create MCP server connections
const asanaServer = mcp({
    url: asanaMcpInstance.serverUrl,
    verbose: true,
});
const shopifyServer = mcp({
    url: shopifyMcpInstance.serverUrl,
    verbose: true,
});
// Get tools from MCP servers
const asanaTools = await asanaServer.tools();
const shopifyTools = await shopifyServer.tools();
// Create specialized agents
const asanaAgent = agent({
    name: "asana_agent",
    llm: openai({ model: "gpt-4o" }),
    tools: asanaTools,
});
const shopifyAgent = agent({
    name: "shopify_agent",
    llm: openai({ model: "gpt-4o" }),
    tools: shopifyTools,
});
// Create multi-agent workflow
const agents = multiAgent({
    agents: [asanaAgent, shopifyAgent],
    rootAgent: asanaAgent,
});import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Initialize MCP tools for each server
asana_tools = MCPServerAdapter(asana_mcp_instance.server_params)
shopify_tools = MCPServerAdapter(shopify_mcp_instance.server_params)
# Create specialized agents for each service
asana_agent = Agent(
    role="Asana Specialist",
    goal="Handle all Asana related tasks and data processing",
    backstory="You are an expert in Asana operations and data analysis",
    tools=asana_tools,
    reasoning=True,
    verbose=False
)
shopify_agent = Agent(
    role="Shopify Specialist",
    goal="Handle all Shopify related tasks and data processing",
    backstory="You are an expert in Shopify operations and data analysis",
    tools=shopify_tools,
    reasoning=True,
    verbose=False
)
# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=asana_agent,
    markdown=True
)
# Create multi-agent crew
crew = Crew(
    agents=[asana_agent, shopify_agent],
    tasks=[research_task],
    verbose=False,
    process=Process.sequential
)
result = crew.kickoff()// CrewAI currently only supports Python. Please use the Python example.import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
asana_tools = klavis_client.mcp_server.list_tools(
    server_url=asana_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
shopify_tools = klavis_client.mcp_server.list_tools(
    server_url=shopify_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(shopify_tools.tools)
messages = [
    {"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]
response = fireworks_client.chat.completions.create(
    model="accounts/fireworks/models/llama-v3p1-70b-instruct",
    messages=messages,
    tools=all_tools
)import Fireworks from 'fireworks-ai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const fireworks = new Fireworks({ apiKey: process.env.FIREWORKS_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    platformName: "Klavis",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    platformName: "Klavis",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get all MCP tools
const asanaTools = await klavisClient.mcpServer.listTools({
    serverUrl: asanaMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Openai,
});
const shopifyTools = await klavisClient.mcpServer.listTools({
    serverUrl: shopifyMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Openai,
});
// Combine all tools
const allTools = [
    ...asanaTools.tools,
    ...shopifyTools.tools
];
const response = await fireworks.chat.completions.create({
    model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
    messages: [
        { role: "system", content: "You are a helpful assistant with access to multiple data sources." },
        { role: "user", content: userMessage }
    ],
    tools: allTools,
});import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ASANA,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
shopify_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SHOPIFY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
asana_tools = klavis_client.mcp_server.list_tools(
    server_url=asana_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
shopify_tools = klavis_client.mcp_server.list_tools(
    server_url=shopify_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(shopify_tools.tools)
messages = [
    {"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]
response = together_client.chat.completions.create(
    model="meta-llama/Llama-2-70b-chat-hf",
    messages=messages,
    tools=all_tools
)import Together from 'together-ai';
import { KlavisClient, Klavis } from 'klavis';
// Initialize clients
const togetherClient = new Together({ apiKey: process.env.TOGETHER_API_KEY });
const klavisClient = new KlavisClient({ apiKey: process.env.KLAVIS_API_KEY });
const asanaMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Asana,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
const shopifyMcpInstance = await klavisClient.mcpServer.createServerInstance({
    serverName: Klavis.McpServerName.Shopify,
    userId: "1234",
    connectionType: Klavis.ConnectionType.StreamableHttp,
});
// Get all MCP tools
const asanaTools = await klavisClient.mcpServer.listTools({
    serverUrl: asanaMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Openai,
});
const shopifyTools = await klavisClient.mcpServer.listTools({
    serverUrl: shopifyMcpInstance.serverUrl,
    connectionType: Klavis.ConnectionType.StreamableHttp,
    format: Klavis.ToolFormat.Openai,
});
// Combine all tools
const allTools = [
    ...asanaTools.tools,
    ...shopifyTools.tools
];
const response = await togetherClient.chat.completions.create({
    model: "meta-llama/Llama-2-70b-chat-hf",
    messages: [
        { role: "system", content: "You are a helpful AI assistant with access to multiple data sources." },
        { role: "user", content: userMessage }
    ],
    tools: allTools,
});Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their AI agents and AI applications with these MCP servers.
Start For Free