Connectto Linear, Postgres, Klavis ReportGen MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Linear, Postgres, Klavis ReportGen with Claude's advanced reasoning capabilities in Klavis AI.

Linear icon

Linear

featured

Linear is a modern issue tracking and project management tool designed for high-performance teams to build better software faster

Available Tools:

  • linear_get_teams
  • linear_get_issues
  • linear_get_issue_by_id
  • +9 more tools
Postgres icon

Postgres

featured

PostgreSQL is a powerful, open source object-relational database system

Available Tools:

  • query
Klavis ReportGen icon

Klavis ReportGen

featured

Generate visually appealing JavaScript web reports from search queries with Klavis AI.

Available Tools:

  • generate_web_reports

Quick Setup Guide

Follow these steps to connect Claude to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform and get your API keys.

2

Configure Connections

Add your desired MCP servers to Claude and configure authentication settings with your Anthropic API key.

3

Test & Deploy

Verify your connections work correctly with Claude's function calling and start using your enhanced AI capabilities.

Claude + KlavisAI Integration Snippets

import os
import json
from anthropic import Anthropic
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
user_message = "Your message here"

linear_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.LINEAR,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.POSTGRES,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

klavis_reportgen_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.KLAVIS_REPORTGEN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
linear_tools = klavis_client.mcp_server.list_tools(
    server_url=linear_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.ANTHROPIC,
)
postgres_tools = klavis_client.mcp_server.list_tools(
    server_url=postgres_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.ANTHROPIC,
)
klavis_reportgen_tools = klavis_client.mcp_server.list_tools(
    server_url=klavis_reportgen_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.ANTHROPIC,
)

# Combine all tools
all_tools = []
all_tools.extend(linear_tools.tools)
all_tools.extend(postgres_tools.tools)
all_tools.extend(klavis_reportgen_tools.tools)

messages = [
    {"role": "user", "content": user_message}
]
        
response = anthropic_client.messages.create(
    model=CLAUDE_MODEL,
    max_tokens=4000,
    messages=messages,
    tools=all_tools
)

Frequently Asked Questions

Everything you need to know about connecting Claude to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Claude applications with these MCP servers.

Start For Free