Create powerful AI workflows by connecting multiple MCP servers including OneDrive, Exa, Mem0 with Claude's advanced reasoning capabilities in Klavis AI.
OneDrive is a file hosting service and synchronization service operated by Microsoft
Exa is an AI-powered search engine designed for AI applications. Use neural search to understand meaning and context, find similar content, get direct answers with citations, and conduct comprehensive research with structured analysis
Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations
Follow these steps to connect Claude to these MCP servers
Sign up for KlavisAI to access our MCP server management platform and get your API keys.
Add your desired MCP servers to Claude and configure authentication settings with your Anthropic API key.
Verify your connections work correctly with Claude's function calling and start using your enhanced AI capabilities.
import os
import json
from anthropic import Anthropic
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
user_message = "Your message here"
onedrive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ONEDRIVE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
exa_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.EXA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MEM0,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
onedrive_tools = klavis_client.mcp_server.list_tools(
server_url=onedrive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
exa_tools = klavis_client.mcp_server.list_tools(
server_url=exa_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
mem0_tools = klavis_client.mcp_server.list_tools(
server_url=mem0_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.ANTHROPIC,
)
# Combine all tools
all_tools = []
all_tools.extend(onedrive_tools.tools)
all_tools.extend(exa_tools.tools)
all_tools.extend(mem0_tools.tools)
messages = [
{"role": "user", "content": user_message}
]
response = anthropic_client.messages.create(
model=CLAUDE_MODEL,
max_tokens=4000,
messages=messages,
tools=all_tools
)
Everything you need to know about connecting Claude to these MCP servers
Join developers who are already using KlavisAI to power their Claude applications with these MCP servers.
Start For Free