Create powerful collaborative AI workflows by connecting multiple MCP servers including Doc2markdown, Firecrawl Deep Research, Resend for enhanced multi-agent automation capabilities in Klavis AI.
Convert any file to markdown using markitdown
A personal research assistant that analyze sources across the web, based on Firecrawl
Resend is a modern email API for sending and receiving emails programmatically
Follow these steps to connect CrewAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.
Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.
import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.DOC2MARKDOWN,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
firecrawl_deep_research_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.FIRECRAWL_DEEP_RESEARCH,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.RESEND,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Initialize MCP tools for each server
doc2markdown_tools = MCPServerAdapter(doc2markdown_mcp_instance.server_params)
firecrawl_deep_research_tools = MCPServerAdapter(firecrawl_deep_research_mcp_instance.server_params)
resend_tools = MCPServerAdapter(resend_mcp_instance.server_params)
# Create specialized agents for each service
doc2markdown_agent = Agent(
role="Doc2markdown Specialist",
goal="Handle all Doc2markdown related tasks and data processing",
backstory="You are an expert in Doc2markdown operations and data analysis",
tools=doc2markdown_tools,
reasoning=True,
verbose=False
)
firecrawl_deep_research_agent = Agent(
role="Firecrawl Deep Research Specialist",
goal="Handle all Firecrawl Deep Research related tasks and data processing",
backstory="You are an expert in Firecrawl Deep Research operations and data analysis",
tools=firecrawl_deep_research_tools,
reasoning=True,
verbose=False
)
resend_agent = Agent(
role="Resend Specialist",
goal="Handle all Resend related tasks and data processing",
backstory="You are an expert in Resend operations and data analysis",
tools=resend_tools,
reasoning=True,
verbose=False
)
# Define collaborative tasks
research_task = Task(
description="Gather comprehensive data from all available sources",
expected_output="Raw data and initial findings from all services",
agent=doc2markdown_agent,
markdown=True
)
analysis_task = Task(
description="Analyze and synthesize the gathered data",
expected_output="Comprehensive analysis with insights and recommendations",
agent=firecrawl_deep_research_agent,
markdown=True
)
# Create multi-agent crew
multi_agent_crew = Crew(
agents=[doc2markdown_agent, firecrawl_deep_research_agent, resend_agent],
tasks=[research_task, analysis_task],
verbose=False,
process=Process.sequential
)
result = multi_agent_crew.kickoff()
Everything you need to know about connecting CrewAI to these MCP servers
Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.
Start For Free