Connectto Gong, Dropbox, Plai MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including Gong, Dropbox, Plai for enhanced multi-agent automation capabilities in Klavis AI.

Gong icon

Gong

featured

Gong is a revenue intelligence platform that captures and analyzes all revenue-related interactions to help sales teams close more deals. It provides conversation analytics, deal insights, and sales performance tracking through call recordings and transcripts

Available Tools:

  • gong_get_transcripts_by_user
  • gong_get_extensive_data
  • gong_get_call_transcripts
  • +2 more tools
Dropbox icon

Dropbox

coming soon

Dropbox is a file hosting service that offers cloud storage and file synchronization

Plai icon

Plai

featured

Plai is an AI-powered advertising platform that simplifies creating, managing, and optimizing Facebook, Instagram, and LinkedIn ad campaigns. It provides tools for lead generation, campaign insights, and automated ad management to help businesses scale their digital marketing efforts effectively.

Available Tools:

  • plai_create_user_profile
  • plai_get_user_profile
  • plai_create_link
  • +7 more tools

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

gong_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GONG,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

dropbox_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DROPBOX,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

plai_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.PLAI,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
gong_tools = MCPServerAdapter(gong_mcp_instance.server_params)
dropbox_tools = MCPServerAdapter(dropbox_mcp_instance.server_params)
plai_tools = MCPServerAdapter(plai_mcp_instance.server_params)

# Create specialized agents for each service
gong_agent = Agent(
    role="Gong Specialist",
    goal="Handle all Gong related tasks and data processing",
    backstory="You are an expert in Gong operations and data analysis",
    tools=gong_tools,
    reasoning=True,
    verbose=False
)

dropbox_agent = Agent(
    role="Dropbox Specialist",
    goal="Handle all Dropbox related tasks and data processing",
    backstory="You are an expert in Dropbox operations and data analysis",
    tools=dropbox_tools,
    reasoning=True,
    verbose=False
)

plai_agent = Agent(
    role="Plai Specialist",
    goal="Handle all Plai related tasks and data processing",
    backstory="You are an expert in Plai operations and data analysis",
    tools=plai_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=gong_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=dropbox_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[gong_agent, dropbox_agent, plai_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free