Connectto Google Drive, YouTube, Monday MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including Google Drive, YouTube, Monday for enhanced multi-agent automation capabilities in Klavis AI.

Google Drive icon

Google Drive

featured

Google Drive is a cloud storage service

Available Tools:

  • google_drive_search_documents
  • google_drive_search_and_retrieve_documents
  • google_drive_get_file_tree_structure
YouTube icon

YouTube

featured

Extract and convert YouTube video information to markdown format

Available Tools:

  • get_youtube_video_transcript
Monday icon

Monday

featured

Monday.com is a work operating system that powers teams to run projects and workflows with confidence. Create boards, manage items, customize columns, organize groups, and collaborate with team members in a visual workspace

Available Tools:

  • monday_get_users_by_name
  • monday_get_boards
  • monday_create_board
  • +9 more tools

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

google_drive_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GOOGLE_DRIVE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.YOUTUBE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

monday_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MONDAY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
google_drive_tools = MCPServerAdapter(google_drive_mcp_instance.server_params)
youtube_tools = MCPServerAdapter(youtube_mcp_instance.server_params)
monday_tools = MCPServerAdapter(monday_mcp_instance.server_params)

# Create specialized agents for each service
google_drive_agent = Agent(
    role="Google Drive Specialist",
    goal="Handle all Google Drive related tasks and data processing",
    backstory="You are an expert in Google Drive operations and data analysis",
    tools=google_drive_tools,
    reasoning=True,
    verbose=False
)

youtube_agent = Agent(
    role="YouTube Specialist",
    goal="Handle all YouTube related tasks and data processing",
    backstory="You are an expert in YouTube operations and data analysis",
    tools=youtube_tools,
    reasoning=True,
    verbose=False
)

monday_agent = Agent(
    role="Monday Specialist",
    goal="Handle all Monday related tasks and data processing",
    backstory="You are an expert in Monday operations and data analysis",
    tools=monday_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=google_drive_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=youtube_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[google_drive_agent, youtube_agent, monday_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free