Connectto Markdown2doc, Klaviyo MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including Markdown2doc, Klaviyo for enhanced multi-agent automation capabilities in Klavis AI.

Markdown2doc icon

Markdown2doc

featured

Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc

Available Tools:

  • convert_markdown_to_file
Klaviyo icon

Klaviyo

featured

Klaviyo is an email and SMS marketing automation platform. Create campaigns, manage lists, track metrics, and automate customer communications via OpenAPI integration

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MARKDOWN2DOC,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

klaviyo_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.KLAVIYO,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
markdown2doc_tools = MCPServerAdapter(markdown2doc_mcp_instance.server_params)
klaviyo_tools = MCPServerAdapter(klaviyo_mcp_instance.server_params)

# Create specialized agents for each service
markdown2doc_agent = Agent(
    role="Markdown2doc Specialist",
    goal="Handle all Markdown2doc related tasks and data processing",
    backstory="You are an expert in Markdown2doc operations and data analysis",
    tools=markdown2doc_tools,
    reasoning=True,
    verbose=False
)

klaviyo_agent = Agent(
    role="Klaviyo Specialist",
    goal="Handle all Klaviyo related tasks and data processing",
    backstory="You are an expert in Klaviyo operations and data analysis",
    tools=klaviyo_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=markdown2doc_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=klaviyo_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[markdown2doc_agent, klaviyo_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free