Create powerful collaborative AI workflows by connecting multiple MCP servers including Mixpanel, Moneybird, Attio for enhanced multi-agent automation capabilities in Klavis AI.
Mixpanel is a powerful product analytics platform that helps teams understand user behavior, track events, analyze conversion funnels, measure retention, and make data-driven decisions with real-time insights and advanced segmentation capabilities
Moneybird is an online accounting software for entrepreneurs and small businesses. Manage contacts, create invoices, track time entries, handle financial accounts, and organize projects with comprehensive bookkeeping features
Attio is a next-generation CRM platform that helps teams build stronger relationships with their customers through powerful data management and automation
Follow these steps to connect CrewAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.
Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.
import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
mixpanel_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MIXPANEL,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
moneybird_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MONEYBIRD,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
attio_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ATTIO,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Initialize MCP tools for each server
mixpanel_tools = MCPServerAdapter(mixpanel_mcp_instance.server_params)
moneybird_tools = MCPServerAdapter(moneybird_mcp_instance.server_params)
attio_tools = MCPServerAdapter(attio_mcp_instance.server_params)
# Create specialized agents for each service
mixpanel_agent = Agent(
role="Mixpanel Specialist",
goal="Handle all Mixpanel related tasks and data processing",
backstory="You are an expert in Mixpanel operations and data analysis",
tools=mixpanel_tools,
reasoning=True,
verbose=False
)
moneybird_agent = Agent(
role="Moneybird Specialist",
goal="Handle all Moneybird related tasks and data processing",
backstory="You are an expert in Moneybird operations and data analysis",
tools=moneybird_tools,
reasoning=True,
verbose=False
)
attio_agent = Agent(
role="Attio Specialist",
goal="Handle all Attio related tasks and data processing",
backstory="You are an expert in Attio operations and data analysis",
tools=attio_tools,
reasoning=True,
verbose=False
)
# Define collaborative tasks
research_task = Task(
description="Gather comprehensive data from all available sources",
expected_output="Raw data and initial findings from all services",
agent=mixpanel_agent,
markdown=True
)
analysis_task = Task(
description="Analyze and synthesize the gathered data",
expected_output="Comprehensive analysis with insights and recommendations",
agent=moneybird_agent,
markdown=True
)
# Create multi-agent crew
multi_agent_crew = Crew(
agents=[mixpanel_agent, moneybird_agent, attio_agent],
tasks=[research_task, analysis_task],
verbose=False,
process=Process.sequential
)
result = multi_agent_crew.kickoff()
Everything you need to know about connecting CrewAI to these MCP servers
Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.
Start For Free