Connectto PagerDuty, ServiceNow MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including PagerDuty, ServiceNow for enhanced multi-agent automation capabilities in Klavis AI.

PagerDuty icon

PagerDuty

featured

PagerDuty is an incident management platform for IT operations. Manage incidents, escalations, on-call schedules, and integrate with monitoring tools via OpenAPI integration

ServiceNow icon

ServiceNow

featured

ServiceNow is a cloud-based software platform that helps companies manage and automate digital workflows for their enterprise operations, particularly in IT, human resources, and customer service.

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

pagerduty_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.PAGERDUTY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

servicenow_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SERVICENOW,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
pagerduty_tools = MCPServerAdapter(pagerduty_mcp_instance.server_params)
servicenow_tools = MCPServerAdapter(servicenow_mcp_instance.server_params)

# Create specialized agents for each service
pagerduty_agent = Agent(
    role="PagerDuty Specialist",
    goal="Handle all PagerDuty related tasks and data processing",
    backstory="You are an expert in PagerDuty operations and data analysis",
    tools=pagerduty_tools,
    reasoning=True,
    verbose=False
)

servicenow_agent = Agent(
    role="ServiceNow Specialist",
    goal="Handle all ServiceNow related tasks and data processing",
    backstory="You are an expert in ServiceNow operations and data analysis",
    tools=servicenow_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=pagerduty_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=servicenow_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[pagerduty_agent, servicenow_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free