Connectto YouTube, Salesforce, Motion MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including YouTube, Salesforce, Motion for enhanced multi-agent automation capabilities in Klavis AI.

YouTube icon

YouTube

featured

Extract and convert YouTube video information to markdown format

Available Tools:

  • get_youtube_video_transcript
Salesforce icon

Salesforce

featured

Salesforce is the world's leading customer relationship management (CRM) platform that helps businesses connect with customers, partners, and potential customers

Available Tools:

  • salesforce_get_accounts
  • salesforce_create_account
  • salesforce_update_account
  • +24 more tools
Motion icon

Motion

featured

Motion is an intelligent project management and calendar application that automatically schedules your tasks, meetings, and projects to optimize your productivity and help you focus on what matters most

Available Tools:

  • motion_get_workspaces
  • motion_get_users
  • motion_get_my_user
  • +11 more tools

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.YOUTUBE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

salesforce_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SALESFORCE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

motion_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MOTION,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
youtube_tools = MCPServerAdapter(youtube_mcp_instance.server_params)
salesforce_tools = MCPServerAdapter(salesforce_mcp_instance.server_params)
motion_tools = MCPServerAdapter(motion_mcp_instance.server_params)

# Create specialized agents for each service
youtube_agent = Agent(
    role="YouTube Specialist",
    goal="Handle all YouTube related tasks and data processing",
    backstory="You are an expert in YouTube operations and data analysis",
    tools=youtube_tools,
    reasoning=True,
    verbose=False
)

salesforce_agent = Agent(
    role="Salesforce Specialist",
    goal="Handle all Salesforce related tasks and data processing",
    backstory="You are an expert in Salesforce operations and data analysis",
    tools=salesforce_tools,
    reasoning=True,
    verbose=False
)

motion_agent = Agent(
    role="Motion Specialist",
    goal="Handle all Motion related tasks and data processing",
    backstory="You are an expert in Motion operations and data analysis",
    tools=motion_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=youtube_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=salesforce_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[youtube_agent, salesforce_agent, motion_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free