Connectto YouTube, Zendesk, Resend MCP Servers

Create powerful collaborative AI workflows by connecting multiple MCP servers including YouTube, Zendesk, Resend for enhanced multi-agent automation capabilities in Klavis AI.

YouTube icon

YouTube

featured

Extract and convert YouTube video information to markdown format

Available Tools:

  • get_youtube_video_transcript
Zendesk icon

Zendesk

coming soon

Zendesk is a customer service software company

Resend icon

Resend

featured

Resend is a modern email API for sending and receiving emails programmatically

Available Tools:

  • resend_send_email
  • resend_create_audience
  • resend_get_audience
  • +12 more tools

Quick Setup Guide

Follow these steps to connect CrewAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Agents & Tools

Set up your CrewAI agents with your desired MCP servers tools and configure authentication settings for collaborative workflows.

3

Deploy Your Crew

Test your multi-agent workflows and start using your enhanced collaborative AI capabilities.

CrewAI + KlavisAI Integration Snippets

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import MCPServerAdapter
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.YOUTUBE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

zendesk_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ZENDESK,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.RESEND,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Initialize MCP tools for each server
youtube_tools = MCPServerAdapter(youtube_mcp_instance.server_params)
zendesk_tools = MCPServerAdapter(zendesk_mcp_instance.server_params)
resend_tools = MCPServerAdapter(resend_mcp_instance.server_params)

# Create specialized agents for each service
youtube_agent = Agent(
    role="YouTube Specialist",
    goal="Handle all YouTube related tasks and data processing",
    backstory="You are an expert in YouTube operations and data analysis",
    tools=youtube_tools,
    reasoning=True,
    verbose=False
)

zendesk_agent = Agent(
    role="Zendesk Specialist",
    goal="Handle all Zendesk related tasks and data processing",
    backstory="You are an expert in Zendesk operations and data analysis",
    tools=zendesk_tools,
    reasoning=True,
    verbose=False
)

resend_agent = Agent(
    role="Resend Specialist",
    goal="Handle all Resend related tasks and data processing",
    backstory="You are an expert in Resend operations and data analysis",
    tools=resend_tools,
    reasoning=True,
    verbose=False
)

# Define collaborative tasks
research_task = Task(
    description="Gather comprehensive data from all available sources",
    expected_output="Raw data and initial findings from all services",
    agent=youtube_agent,
    markdown=True
)

analysis_task = Task(
    description="Analyze and synthesize the gathered data",
    expected_output="Comprehensive analysis with insights and recommendations",
    agent=zendesk_agent,
    markdown=True
)

# Create multi-agent crew
multi_agent_crew = Crew(
    agents=[youtube_agent, zendesk_agent, resend_agent],
    tasks=[research_task, analysis_task],
    verbose=False,
    process=Process.sequential
)

result = multi_agent_crew.kickoff()

Frequently Asked Questions

Everything you need to know about connecting CrewAI to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their CrewAI multi-agent systems with these MCP servers.

Start For Free