Connectto Calendly, Firecrawl Deep Research, Resend MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Calendly, Firecrawl Deep Research, Resend for enhanced automation capabilities in Klavis AI.

Calendly icon

Calendly

coming soon

Manage scheduling and appointments with your agents.

Firecrawl Deep Research icon

Firecrawl Deep Research

featured

A personal research assistant that analyze sources across the web, based on Firecrawl

Available Tools:

  • firecrawl_deep_research
Resend icon

Resend

featured

Resend is a modern email API for sending and receiving emails programmatically

Available Tools:

  • resend_send_email
  • resend_create_audience
  • resend_get_audience
  • +12 more tools

Quick Setup Guide

Follow these steps to connect Fireworks AI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Fireworks AI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Fireworks AI + KlavisAI Integration Snippets

import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

calendly_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CALENDLY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

firecrawl_deep_research_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.FIRECRAWL_DEEP_RESEARCH,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.RESEND,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get all MCP tools
calendly_tools = klavis_client.mcp_server.list_tools(
    server_url=calendly_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
firecrawl_deep_research_tools = klavis_client.mcp_server.list_tools(
    server_url=firecrawl_deep_research_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
resend_tools = klavis_client.mcp_server.list_tools(
    server_url=resend_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(calendly_tools.tools)
all_tools.extend(firecrawl_deep_research_tools.tools)
all_tools.extend(resend_tools.tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]

response = fireworks_client.chat.completions.create(
    model="accounts/fireworks/models/llama-v3p1-70b-instruct",
    messages=messages,
    tools=all_tools
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Fireworks AI applications with these MCP servers.

Start For Free