Create powerful AI workflows by connecting multiple MCP servers including Linear, Google Docs, Cloudflare for enhanced automation capabilities in Klavis AI.
Linear is a modern issue tracking and project management tool designed for high-performance teams to build better software faster
Google Docs is a word processor included as part of the free, web-based Google Docs Editors suite
Cloudflare provides content delivery network services, DDoS protection, and security.
Follow these steps to connect Fireworks AI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Fireworks AI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
linear_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.LINEAR,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
cloudflare_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CLOUDFLARE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
linear_tools = klavis_client.mcp_server.list_tools(
server_url=linear_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
cloudflare_tools = klavis_client.mcp_server.list_tools(
server_url=cloudflare_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(linear_tools.tools)
all_tools.extend(google_docs_tools.tools)
all_tools.extend(cloudflare_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = fireworks_client.chat.completions.create(
model="accounts/fireworks/models/llama-v3p1-70b-instruct",
messages=messages,
tools=all_tools
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Fireworks AI applications with these MCP servers.
Start For Free