Connectto Mixpanel, Markdown2doc, Tavily MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Mixpanel, Markdown2doc, Tavily for enhanced automation capabilities in Klavis AI.

Mixpanel icon

Mixpanel

featured

Mixpanel is a powerful product analytics platform that helps teams understand user behavior, track events, analyze conversion funnels, measure retention, and make data-driven decisions with real-time insights and advanced segmentation capabilities

Available Tools:

  • mixpanel_send_events
  • mixpanel_get_events
  • mixpanel_get_event_properties
  • +6 more tools
Markdown2doc icon

Markdown2doc

featured

Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc

Available Tools:

  • convert_markdown_to_file
Tavily icon

Tavily

featured

Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities

Available Tools:

  • tavily_search
  • tavily_extract
  • tavily_crawl
  • +1 more tools

Quick Setup Guide

Follow these steps to connect Fireworks AI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Fireworks AI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Fireworks AI + KlavisAI Integration Snippets

import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

mixpanel_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MIXPANEL,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MARKDOWN2DOC,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.TAVILY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get all MCP tools
mixpanel_tools = klavis_client.mcp_server.list_tools(
    server_url=mixpanel_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
markdown2doc_tools = klavis_client.mcp_server.list_tools(
    server_url=markdown2doc_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
tavily_tools = klavis_client.mcp_server.list_tools(
    server_url=tavily_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(mixpanel_tools.tools)
all_tools.extend(markdown2doc_tools.tools)
all_tools.extend(tavily_tools.tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]

response = fireworks_client.chat.completions.create(
    model="accounts/fireworks/models/llama-v3p1-70b-instruct",
    messages=messages,
    tools=all_tools
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Fireworks AI applications with these MCP servers.

Start For Free