Connectto Postgres, Calendly, OneDrive MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Postgres, Calendly, OneDrive for enhanced automation capabilities in Klavis AI.

Postgres icon

Postgres

featured

PostgreSQL is a powerful, open source object-relational database system

Available Tools:

  • query
Calendly icon

Calendly

coming soon

Manage scheduling and appointments with your agents.

OneDrive icon

OneDrive

coming soon

OneDrive is a file hosting service and synchronization service operated by Microsoft

Quick Setup Guide

Follow these steps to connect Fireworks AI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Fireworks AI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Fireworks AI + KlavisAI Integration Snippets

import os
import json
from fireworks.client import Fireworks
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
fireworks_client = Fireworks(api_key=os.getenv("FIREWORKS_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.POSTGRES,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

calendly_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CALENDLY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

onedrive_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.ONEDRIVE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get all MCP tools
postgres_tools = klavis_client.mcp_server.list_tools(
    server_url=postgres_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
calendly_tools = klavis_client.mcp_server.list_tools(
    server_url=calendly_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
onedrive_tools = klavis_client.mcp_server.list_tools(
    server_url=onedrive_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(postgres_tools.tools)
all_tools.extend(calendly_tools.tools)
all_tools.extend(onedrive_tools.tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]

response = fireworks_client.chat.completions.create(
    model="accounts/fireworks/models/llama-v3p1-70b-instruct",
    messages=messages,
    tools=all_tools
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Fireworks AI applications with these MCP servers.

Start For Free