Connectto Affinity, Plai, OpenRouter MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Affinity, Plai, OpenRouter for enhanced automation capabilities in Klavis AI.

Affinity icon

Affinity

featured

Affinity is a relationship intelligence platform that helps teams manage relationships, track deals, and leverage network insights to drive business growth with powerful CRM and relationship mapping capabilities

Available Tools:

  • affinity_get_current_user
  • affinity_get_all_list_entries_on_a_list
  • affinity_get_metadata_on_all_lists
  • +20 more tools
Plai icon

Plai

featured

Plai is an AI-powered advertising platform that simplifies creating, managing, and optimizing Facebook, Instagram, and LinkedIn ad campaigns. It provides tools for lead generation, campaign insights, and automated ad management to help businesses scale their digital marketing efforts effectively.

Available Tools:

  • plai_create_user_profile
  • plai_get_user_profile
  • plai_create_link
  • +7 more tools
OpenRouter icon

OpenRouter

featured

Access to multiple AI models through a unified API. Generate chat completions, compare model performance, manage usage and costs, get model recommendations, and analyze model capabilities across various providers like OpenAI, Anthropic, Meta, Google, and more

Available Tools:

  • openrouter_list_models
  • openrouter_search_models
  • openrouter_get_model_pricing
  • +11 more tools

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))

user_message = "Your query here"

affinity_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.AFFINITY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

plai_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.PLAI,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

openrouter_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.OPENROUTER,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
affinity_tools = klavis_client.mcp_server.list_tools(
    server_url=affinity_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
plai_tools = klavis_client.mcp_server.list_tools(
    server_url=plai_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
openrouter_tools = klavis_client.mcp_server.list_tools(
    server_url=openrouter_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(affinity_tools.tools)
all_tools.extend(plai_tools.tools)
all_tools.extend(openrouter_tools.tools)

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=user_message,
    config=genai.types.GenerateContentConfig(
        tools=all_tools,
    ),
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free