Create powerful AI workflows by connecting multiple MCP servers including Asana, Gong, OneDrive for enhanced automation capabilities in Klavis AI.
Asana is a web and mobile application designed to help teams organize, track, and manage their work. It provides project management tools, task assignment, collaboration features, and progress tracking to boost team productivity
Gong is a revenue intelligence platform that captures and analyzes all revenue-related interactions to help sales teams close more deals. It provides conversation analytics, deal insights, and sales performance tracking through call recordings and transcripts
OneDrive is a file hosting service and synchronization service operated by Microsoft
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ASANA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
gong_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GONG,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
onedrive_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ONEDRIVE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
asana_tools = klavis_client.mcp_server.list_tools(
server_url=asana_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
gong_tools = klavis_client.mcp_server.list_tools(
server_url=gong_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
onedrive_tools = klavis_client.mcp_server.list_tools(
server_url=onedrive_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(gong_tools.tools)
all_tools.extend(onedrive_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free