Create powerful AI workflows by connecting multiple MCP servers including Attio, Linear, Firecrawl Web Search for enhanced automation capabilities in Klavis AI.
Attio is a next-generation CRM platform that helps teams build stronger relationships with their customers through powerful data management and automation
Linear is a modern issue tracking and project management tool designed for high-performance teams to build better software faster
Advanced web crawling, scraping, and search capabilities powered by Firecrawl
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
attio_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ATTIO,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
linear_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.LINEAR,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
firecrawl_web_search_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.FIRECRAWL_WEB_SEARCH,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
attio_tools = klavis_client.mcp_server.list_tools(
server_url=attio_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
linear_tools = klavis_client.mcp_server.list_tools(
server_url=linear_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
firecrawl_web_search_tools = klavis_client.mcp_server.list_tools(
server_url=firecrawl_web_search_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(attio_tools.tools)
all_tools.extend(linear_tools.tools)
all_tools.extend(firecrawl_web_search_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free