Connectto Calendly, Firecrawl Deep Research, Motion MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Calendly, Firecrawl Deep Research, Motion for enhanced automation capabilities in Klavis AI.

Calendly icon

Calendly

coming soon

Manage scheduling and appointments with your agents.

Firecrawl Deep Research icon

Firecrawl Deep Research

featured

A personal research assistant that analyze sources across the web, based on Firecrawl

Available Tools:

  • firecrawl_deep_research
Motion icon

Motion

featured

Motion is an intelligent project management and calendar application that automatically schedules your tasks, meetings, and projects to optimize your productivity and help you focus on what matters most

Available Tools:

  • motion_get_workspaces
  • motion_get_users
  • motion_get_my_user
  • +11 more tools

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"

calendly_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CALENDLY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

firecrawl_deep_research_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.FIRECRAWL_DEEP_RESEARCH,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

motion_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MOTION,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
calendly_tools = klavis_client.mcp_server.list_tools(
    server_url=calendly_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
firecrawl_deep_research_tools = klavis_client.mcp_server.list_tools(
    server_url=firecrawl_deep_research_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
motion_tools = klavis_client.mcp_server.list_tools(
    server_url=motion_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(calendly_tools.tools)
all_tools.extend(firecrawl_deep_research_tools.tools)
all_tools.extend(motion_tools.tools)

model = genai.GenerativeModel(
    model_name=GEMINI_MODEL,
    tools=all_tools
)

chat = model.start_chat()
response = chat.send_message(user_message)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free