Create powerful AI workflows by connecting multiple MCP servers including ClickUp, Postgres, Resend for enhanced automation capabilities in Klavis AI.
ClickUp is a comprehensive project management and productivity platform that helps teams organize tasks, manage projects, and collaborate effectively with customizable workflows and powerful tracking features
PostgreSQL is a powerful, open source object-relational database system
Resend is a modern email API for sending and receiving emails programmatically
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
clickup_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CLICKUP,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.POSTGRES,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.RESEND,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
clickup_tools = klavis_client.mcp_server.list_tools(
server_url=clickup_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
postgres_tools = klavis_client.mcp_server.list_tools(
server_url=postgres_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
resend_tools = klavis_client.mcp_server.list_tools(
server_url=resend_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(clickup_tools.tools)
all_tools.extend(postgres_tools.tools)
all_tools.extend(resend_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free