Create powerful AI workflows by connecting multiple MCP servers including Close, ClickUp, Firecrawl Deep Research for enhanced automation capabilities in Klavis AI.
Close is a modern CRM platform built for sales teams, providing powerful lead management, contact organization, and sales pipeline tracking to help businesses close more deals
ClickUp is a comprehensive project management and productivity platform that helps teams organize tasks, manage projects, and collaborate effectively with customizable workflows and powerful tracking features
A personal research assistant that analyze sources across the web, based on Firecrawl
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
close_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CLOSE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
clickup_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CLICKUP,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
firecrawl_deep_research_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.FIRECRAWL_DEEP_RESEARCH,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
close_tools = klavis_client.mcp_server.list_tools(
server_url=close_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
clickup_tools = klavis_client.mcp_server.list_tools(
server_url=clickup_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
firecrawl_deep_research_tools = klavis_client.mcp_server.list_tools(
server_url=firecrawl_deep_research_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(close_tools.tools)
all_tools.extend(clickup_tools.tools)
all_tools.extend(firecrawl_deep_research_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free