Create powerful AI workflows by connecting multiple MCP servers including Confluence, Tavily, Google Jobs for enhanced automation capabilities in Klavis AI.
Confluence is a team workspace where knowledge and collaboration meet
Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities
Google Jobs is a comprehensive job search platform that aggregates listings from across the web. Search for jobs by location, company, employment type, and more, with detailed information about requirements, benefits, and application processes
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
confluence_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CONFLUENCE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.TAVILY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_jobs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_JOBS,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
confluence_tools = klavis_client.mcp_server.list_tools(
server_url=confluence_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
tavily_tools = klavis_client.mcp_server.list_tools(
server_url=tavily_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
google_jobs_tools = klavis_client.mcp_server.list_tools(
server_url=google_jobs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(confluence_tools.tools)
all_tools.extend(tavily_tools.tools)
all_tools.extend(google_jobs_tools.tools)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=user_message,
config=genai.types.GenerateContentConfig(
tools=all_tools,
),
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free