Connectto Doc2markdown, Gong, LinkedIn MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Doc2markdown, Gong, LinkedIn for enhanced automation capabilities in Klavis AI.

Doc2markdown icon

Doc2markdown

featured

Convert any file to markdown using markitdown

Available Tools:

  • convert_document_to_markdown
Gong icon

Gong

featured

Gong is a revenue intelligence platform that captures and analyzes all revenue-related interactions to help sales teams close more deals. It provides conversation analytics, deal insights, and sales performance tracking through call recordings and transcripts

Available Tools:

  • gong_get_transcripts_by_user
  • gong_get_extensive_data
  • gong_get_call_transcripts
  • +2 more tools
LinkedIn icon

LinkedIn

coming soon

LinkedIn is a business and employment-oriented online service

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"

doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DOC2MARKDOWN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

gong_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GONG,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

linkedin_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.LINKEDIN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
doc2markdown_tools = klavis_client.mcp_server.list_tools(
    server_url=doc2markdown_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
gong_tools = klavis_client.mcp_server.list_tools(
    server_url=gong_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
linkedin_tools = klavis_client.mcp_server.list_tools(
    server_url=linkedin_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(doc2markdown_tools.tools)
all_tools.extend(gong_tools.tools)
all_tools.extend(linkedin_tools.tools)

model = genai.GenerativeModel(
    model_name=GEMINI_MODEL,
    tools=all_tools
)

chat = model.start_chat()
response = chat.send_message(user_message)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free