Connectto Figma, Tavily, Mem0 MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Figma, Tavily, Mem0 for enhanced automation capabilities in Klavis AI.

Figma icon

Figma

coming soon

Figma is a collaborative interface design tool for web and mobile applications.

Tavily icon

Tavily

featured

Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities

Available Tools:

  • tavily_search
  • tavily_extract
  • tavily_crawl
  • +1 more tools
Mem0 icon

Mem0

featured

Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations

Available Tools:

  • mem0_add_memory
  • mem0_get_all_memories
  • mem0_search_memories
  • +2 more tools

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))

user_message = "Your query here"

figma_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.FIGMA,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.TAVILY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MEM0,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
figma_tools = klavis_client.mcp_server.list_tools(
    server_url=figma_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
tavily_tools = klavis_client.mcp_server.list_tools(
    server_url=tavily_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
mem0_tools = klavis_client.mcp_server.list_tools(
    server_url=mem0_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(figma_tools.tools)
all_tools.extend(tavily_tools.tools)
all_tools.extend(mem0_tools.tools)

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=user_message,
    config=genai.types.GenerateContentConfig(
        tools=all_tools,
    ),
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free