Create powerful AI workflows by connecting multiple MCP servers including Markdown2doc, LinkedIn, Calendly for enhanced automation capabilities in Klavis AI.
Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc
LinkedIn is a business and employment-oriented online service
Manage scheduling and appointments with your agents.
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MARKDOWN2DOC,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
linkedin_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.LINKEDIN,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
calendly_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CALENDLY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
markdown2doc_tools = klavis_client.mcp_server.list_tools(
server_url=markdown2doc_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
linkedin_tools = klavis_client.mcp_server.list_tools(
server_url=linkedin_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
calendly_tools = klavis_client.mcp_server.list_tools(
server_url=calendly_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(markdown2doc_tools.tools)
all_tools.extend(linkedin_tools.tools)
all_tools.extend(calendly_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free