Connectto Markdown2doc, Salesforce, Supabase MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Markdown2doc, Salesforce, Supabase for enhanced automation capabilities in Klavis AI.

Markdown2doc icon

Markdown2doc

featured

Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc

Available Tools:

  • convert_markdown_to_file
Salesforce icon

Salesforce

featured

Salesforce is the world's leading customer relationship management (CRM) platform that helps businesses connect with customers, partners, and potential customers

Available Tools:

  • salesforce_query
  • salesforce_tooling_query
  • salesforce_describe_object
  • +2 more tools
Supabase icon

Supabase

featured

Supabase official MCP Server

Available Tools:

  • supabase_list_projects
  • supabase_get_project
  • supabase_get_cost
  • +21 more tools

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"

markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MARKDOWN2DOC,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

salesforce_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SALESFORCE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

supabase_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.SUPABASE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
markdown2doc_tools = klavis_client.mcp_server.list_tools(
    server_url=markdown2doc_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
salesforce_tools = klavis_client.mcp_server.list_tools(
    server_url=salesforce_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
supabase_tools = klavis_client.mcp_server.list_tools(
    server_url=supabase_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(markdown2doc_tools.tools)
all_tools.extend(salesforce_tools.tools)
all_tools.extend(supabase_tools.tools)

model = genai.GenerativeModel(
    model_name=GEMINI_MODEL,
    tools=all_tools
)

chat = model.start_chat()
response = chat.send_message(user_message)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free