Seamlessly integrate your Google Gemini applications with OpenRouter using Klavis AI's comprehensive MCP server connection guide.
Access to multiple AI models through a unified API. Generate chat completions, compare model performance, manage usage and costs, get model recommendations, and analyze model capabilities across various providers like OpenAI, Anthropic, Meta, Google, and more
Follow these steps to connect Google Gemini to this MCP server
Sign up for KlavisAI to access our MCP server management platform.
Add the MCP server to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
openrouter_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.OPENROUTER,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_tools = klavis_client.mcp_server.list_tools(
server_url=openrouter_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=user_message,
config=genai.types.GenerateContentConfig(
tools=mcp_tools.tools,
),
)
Everything you need to know about connecting to this MCP server
Join developers who are already using KlavisAI to power their Google Gemini applications with this MCP server.
Start For Free