Create powerful AI workflows by connecting multiple MCP servers including Postgres, Google Docs, Firecrawl Web Search for enhanced automation capabilities in Klavis AI.
PostgreSQL is a powerful, open source object-relational database system
Google Docs is a word processor included as part of the free, web-based Google Docs Editors suite
Advanced web crawling, scraping, and search capabilities powered by Firecrawl
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import google.generativeai as genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
genai.configure(api_key=os.getenv("GOOGLE_AI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
GEMINI_MODEL = "gemini-2.5-flash"
user_message = "Your query here"
postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.POSTGRES,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GOOGLE_DOCS,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
firecrawl_web_search_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.FIRECRAWL_WEB_SEARCH,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
postgres_tools = klavis_client.mcp_server.list_tools(
server_url=postgres_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
google_docs_tools = klavis_client.mcp_server.list_tools(
server_url=google_docs_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
firecrawl_web_search_tools = klavis_client.mcp_server.list_tools(
server_url=firecrawl_web_search_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(postgres_tools.tools)
all_tools.extend(google_docs_tools.tools)
all_tools.extend(firecrawl_web_search_tools.tools)
model = genai.GenerativeModel(
model_name=GEMINI_MODEL,
tools=all_tools
)
chat = model.start_chat()
response = chat.send_message(user_message)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free