Connectto PostHog, Fathom MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including PostHog, Fathom for enhanced automation capabilities in Klavis AI.

PostHog icon

PostHog

featured

PostHog is an open-source product analytics platform. Track events, analyze user behavior, run experiments, manage feature flags, and generate insights via OpenAPI integration

Fathom icon

Fathom

featured

Fathom is an AI meeting assistant that records, transcribes, and summarizes your video calls. Automatically capture meeting notes, action items, and key insights from Zoom, Google Meet, and Microsoft Teams meetings

Quick Setup Guide

Follow these steps to connect Google Gemini to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Gemini and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Google Gemini + KlavisAI Integration Snippets

import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))

user_message = "Your query here"

posthog_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.POSTHOG,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

fathom_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.FATHOM,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
posthog_tools = klavis_client.mcp_server.list_tools(
    server_url=posthog_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)
fathom_tools = klavis_client.mcp_server.list_tools(
    server_url=fathom_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.GEMINI,
)

# Combine all tools
all_tools = []
all_tools.extend(posthog_tools.tools)
all_tools.extend(fathom_tools.tools)

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=user_message,
    config=genai.types.GenerateContentConfig(
        tools=all_tools,
    ),
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.

Start For Free