Seamlessly integrate your Google Gemini applications with Tavily using Klavis AI's comprehensive MCP server connection guide.
Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities
Follow these steps to connect Google Gemini to this MCP server
Sign up for KlavisAI to access our MCP server management platform.
Add the MCP server to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.TAVILY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_tools = klavis_client.mcp_server.list_tools(
server_url=tavily_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=user_message,
config=genai.types.GenerateContentConfig(
tools=mcp_tools.tools,
),
)
Everything you need to know about connecting to this MCP server
Join developers who are already using KlavisAI to power their Google Gemini applications with this MCP server.
Start For Free