Create powerful AI workflows by connecting multiple MCP servers including YouTube, WhatsApp, OpenRouter for enhanced automation capabilities in Klavis AI.
Extract and convert YouTube video information to markdown format
WhatsApp Business API integration that enables sending text messages, media, and managing conversations with customers. Perfect for customer support, marketing campaigns, and automated messaging workflows through the official WhatsApp Business platform.
Access to multiple AI models through a unified API. Generate chat completions, compare model performance, manage usage and costs, get model recommendations, and analyze model capabilities across various providers like OpenAI, Anthropic, Meta, Google, and more
Follow these steps to connect Google Gemini to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Gemini and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
from google import genai
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
user_message = "Your query here"
youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.YOUTUBE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
whatsapp_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.WHATSAPP,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
openrouter_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.OPENROUTER,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
youtube_tools = klavis_client.mcp_server.list_tools(
server_url=youtube_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
whatsapp_tools = klavis_client.mcp_server.list_tools(
server_url=whatsapp_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
openrouter_tools = klavis_client.mcp_server.list_tools(
server_url=openrouter_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.GEMINI,
)
# Combine all tools
all_tools = []
all_tools.extend(youtube_tools.tools)
all_tools.extend(whatsapp_tools.tools)
all_tools.extend(openrouter_tools.tools)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=user_message,
config=genai.types.GenerateContentConfig(
tools=all_tools,
),
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Google Gemini applications with these MCP servers.
Start For Free