Connectto Gmail, Perplexity, Mem0 MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Gmail, Perplexity, Mem0 for enhanced automation capabilities in Klavis AI.

Gmail icon

Gmail

featured

Gmail is a free email service provided by Google

Available Tools:

  • gmail_send_email
  • gmail_draft_email
  • gmail_read_email
  • +5 more tools
Perplexity icon

Perplexity

coming soon

Perplexity is an AI research assistant that provides accurate answers and cites sources

Mem0 icon

Mem0

featured

Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations

Available Tools:

  • mem0_add_memory
  • mem0_get_all_memories
  • mem0_search_memories
  • +2 more tools

Quick Setup Guide

Follow these steps to connect LangChain to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LangChain and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LangChain + KlavisAI Integration Snippets

import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))

gmail_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GMAIL,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

perplexity_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.PERPLEXITY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MEM0,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mcp_client = MultiServerMCPClient({
    "gmail": {
        "transport": "streamable_http",
        "url": gmail_mcp_instance.server_url
    },
    "perplexity": {
        "transport": "streamable_http",
        "url": perplexity_mcp_instance.server_url
    },
    "mem0": {
        "transport": "streamable_http",
        "url": mem0_mcp_instance.server_url
    }
})

tools = asyncio.run(mcp_client.get_tools())

agent = create_react_agent(
    model=llm,
    tools=tools,
)

response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.

Start For Free