Create powerful AI workflows by connecting multiple MCP servers including Jira, Brave Search, Mem0 for enhanced automation capabilities in Klavis AI.
Jira is a project management and issue tracking tool developed by Atlassian
Brave Search is a search engine that provides comprehensive web, image, news, and video search.
Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations
Follow these steps to connect LangChain to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to LangChain and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))
jira_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.JIRA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
brave_search_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.BRAVE_SEARCH,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MEM0,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_client = MultiServerMCPClient({
"jira": {
"transport": "streamable_http",
"url": jira_mcp_instance.server_url
},
"brave search": {
"transport": "streamable_http",
"url": brave_search_mcp_instance.server_url
},
"mem0": {
"transport": "streamable_http",
"url": mem0_mcp_instance.server_url
}
})
tools = asyncio.run(mcp_client.get_tools())
agent = create_react_agent(
model=llm,
tools=tools,
)
response = asyncio.run(agent.ainvoke({
"messages": [{"role": "user", "content": "Your query here"}]
}))
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.
Start For Free