Connectto Markdown2doc, Linear, Doc2markdown MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Markdown2doc, Linear, Doc2markdown for enhanced automation capabilities in Klavis AI.

Markdown2doc icon

Markdown2doc

featured

Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc

Available Tools:

  • convert_markdown_to_file
Linear icon

Linear

featured

Linear is a modern issue tracking and project management tool designed for high-performance teams to build better software faster

Available Tools:

  • linear_get_teams
  • linear_get_issues
  • linear_get_issue_by_id
  • +9 more tools
Doc2markdown icon

Doc2markdown

featured

Convert any file to markdown using markitdown

Available Tools:

  • convert_document_to_markdown

Quick Setup Guide

Follow these steps to connect LangChain to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LangChain and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LangChain + KlavisAI Integration Snippets

import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))

markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MARKDOWN2DOC,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

linear_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.LINEAR,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DOC2MARKDOWN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mcp_client = MultiServerMCPClient({
    "markdown2doc": {
        "transport": "streamable_http",
        "url": markdown2doc_mcp_instance.server_url
    },
    "linear": {
        "transport": "streamable_http",
        "url": linear_mcp_instance.server_url
    },
    "doc2markdown": {
        "transport": "streamable_http",
        "url": doc2markdown_mcp_instance.server_url
    }
})

tools = asyncio.run(mcp_client.get_tools())

agent = create_react_agent(
    model=llm,
    tools=tools,
)

response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.

Start For Free