Connectto Mixpanel, Google Docs, Mem0 MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Mixpanel, Google Docs, Mem0 for enhanced automation capabilities in Klavis AI.

Mixpanel icon

Mixpanel

featured

Mixpanel is a powerful product analytics platform that helps teams understand user behavior, track events, analyze conversion funnels, measure retention, and make data-driven decisions with real-time insights and advanced segmentation capabilities

Available Tools:

  • mixpanel_send_events
  • mixpanel_get_events
  • mixpanel_get_event_properties
  • +6 more tools
Google Docs icon

Google Docs

featured

Google Docs is a word processor included as part of the free, web-based Google Docs Editors suite

Available Tools:

  • google_docs_get_document_by_id
  • google_docs_get_all_documents
  • google_docs_insert_text_at_end
  • +2 more tools
Mem0 icon

Mem0

featured

Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations

Available Tools:

  • mem0_add_memory
  • mem0_get_all_memories
  • mem0_search_memories
  • +2 more tools

Quick Setup Guide

Follow these steps to connect LangChain to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LangChain and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LangChain + KlavisAI Integration Snippets

import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))

mixpanel_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MIXPANEL,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

google_docs_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GOOGLE_DOCS,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MEM0,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mcp_client = MultiServerMCPClient({
    "mixpanel": {
        "transport": "streamable_http",
        "url": mixpanel_mcp_instance.server_url
    },
    "google docs": {
        "transport": "streamable_http",
        "url": google_docs_mcp_instance.server_url
    },
    "mem0": {
        "transport": "streamable_http",
        "url": mem0_mcp_instance.server_url
    }
})

tools = asyncio.run(mcp_client.get_tools())

agent = create_react_agent(
    model=llm,
    tools=tools,
)

response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.

Start For Free