Connectto Postgres, Confluence, Resend MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Postgres, Confluence, Resend for enhanced automation capabilities in Klavis AI.

Postgres icon

Postgres

featured

PostgreSQL is a powerful, open source object-relational database system

Available Tools:

  • query
Confluence icon

Confluence

featured

Confluence is a team workspace where knowledge and collaboration meet

Available Tools:

  • confluence_create_page
  • confluence_get_page
  • confluence_get_pages_by_id
  • +11 more tools
Resend icon

Resend

featured

Resend is a modern email API for sending and receiving emails programmatically

Available Tools:

  • resend_send_email
  • resend_create_audience
  • resend_get_audience
  • +12 more tools

Quick Setup Guide

Follow these steps to connect LangChain to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LangChain and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LangChain + KlavisAI Integration Snippets

import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))

postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.POSTGRES,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

confluence_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CONFLUENCE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.RESEND,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mcp_client = MultiServerMCPClient({
    "postgres": {
        "transport": "streamable_http",
        "url": postgres_mcp_instance.server_url
    },
    "confluence": {
        "transport": "streamable_http",
        "url": confluence_mcp_instance.server_url
    },
    "resend": {
        "transport": "streamable_http",
        "url": resend_mcp_instance.server_url
    }
})

tools = asyncio.run(mcp_client.get_tools())

agent = create_react_agent(
    model=llm,
    tools=tools,
)

response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.

Start For Free