Connectto Tavily, Microsoft Teams MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Tavily, Microsoft Teams for enhanced automation capabilities in Klavis AI.

Tavily icon

Tavily

featured

Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities

Available Tools:

  • tavily_search
  • tavily_extract
  • tavily_crawl
  • +1 more tools
Microsoft Teams icon

Microsoft Teams

featured

Microsoft Teams is a collaboration platform that combines workplace chat, meetings, calling, and file sharing. Manage teams, channels, messages, meetings, and collaborate with your organization seamlessly

Quick Setup Guide

Follow these steps to connect LangChain to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LangChain and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LangChain + KlavisAI Integration Snippets

import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))

tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.TAVILY,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

microsoft_teams_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MICROSOFT_TEAMS,
    user_id="1234",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

mcp_client = MultiServerMCPClient({
    "tavily": {
        "transport": "streamable_http",
        "url": tavily_mcp_instance.server_url
    },
    "microsoft teams": {
        "transport": "streamable_http",
        "url": microsoft_teams_mcp_instance.server_url
    }
})

tools = asyncio.run(mcp_client.get_tools())

agent = create_react_agent(
    model=llm,
    tools=tools,
)

response = asyncio.run(agent.ainvoke({
    "messages": [{"role": "user", "content": "Your query here"}]
}))

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.

Start For Free