Create powerful AI workflows by connecting multiple MCP servers including WhatsApp, Tavily, Monday for enhanced automation capabilities in Klavis AI.
WhatsApp Business API integration that enables sending text messages, media, and managing conversations with customers. Perfect for customer support, marketing campaigns, and automated messaging workflows through the official WhatsApp Business platform.
Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities
Monday.com is a work operating system that powers teams to run projects and workflows with confidence. Create boards, manage items, customize columns, organize groups, and collaborate with team members in a visual workspace
Follow these steps to connect LangChain to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to LangChain and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import asyncio
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
llm = ChatOpenAI(model="gpt-4o-mini", api_key=os.getenv("OPENAI_API_KEY"))
whatsapp_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.WHATSAPP,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.TAVILY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
monday_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MONDAY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mcp_client = MultiServerMCPClient({
"whatsapp": {
"transport": "streamable_http",
"url": whatsapp_mcp_instance.server_url
},
"tavily": {
"transport": "streamable_http",
"url": tavily_mcp_instance.server_url
},
"monday": {
"transport": "streamable_http",
"url": monday_mcp_instance.server_url
}
})
tools = asyncio.run(mcp_client.get_tools())
agent = create_react_agent(
model=llm,
tools=tools,
)
response = asyncio.run(agent.ainvoke({
"messages": [{"role": "user", "content": "Your query here"}]
}))
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their LangChain applications with these MCP servers.
Start For Free