Connectto Linear, ClickUp, Perplexity MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Linear, ClickUp, Perplexity for enhanced automation capabilities in Klavis AI.

Linear icon

Linear

featured

Linear is a modern issue tracking and project management tool designed for high-performance teams to build better software faster

Available Tools:

  • linear_get_teams
  • linear_get_issues
  • linear_get_issue_by_id
  • +9 more tools
ClickUp icon

ClickUp

featured

ClickUp is a comprehensive project management and productivity platform that helps teams organize tasks, manage projects, and collaborate effectively with customizable workflows and powerful tracking features

Available Tools:

  • clickup_get_teams
  • clickup_get_workspaces
  • clickup_get_spaces
  • +18 more tools
Perplexity icon

Perplexity

coming soon

Perplexity is an AI research assistant that provides accurate answers and cites sources

Quick Setup Guide

Follow these steps to connect LlamaIndex to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to LlamaIndex and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

LlamaIndex + KlavisAI Integration Snippets

import os
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
from llama_index.tools.mcp import (
    BasicMCPClient,
    get_tools_from_mcp_url,
    aget_tools_from_mcp_url,
)
from llama_index.core.agent.workflow import FunctionAgent, AgentWorkflow

# Initialize clients
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

linear_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.LINEAR,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

clickup_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CLICKUP,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

perplexity_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.PERPLEXITY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)
linear_tools = await aget_tools_from_mcp_url(
    linear_mcp_instance.server_url, 
    client=BasicMCPClient(linear_mcp_instance.server_url)
)
clickup_tools = await aget_tools_from_mcp_url(
    clickup_mcp_instance.server_url, 
    client=BasicMCPClient(clickup_mcp_instance.server_url)
)
perplexity_tools = await aget_tools_from_mcp_url(
    perplexity_mcp_instance.server_url, 
    client=BasicMCPClient(perplexity_mcp_instance.server_url)
)

linear_agent = FunctionAgent(
    name="linear_agent",
    tools=linear_tools,
    llm=llm,
)

clickup_agent = FunctionAgent(
    name="clickup_agent",
    tools=clickup_tools,
    llm=llm,
)

perplexity_agent = FunctionAgent(
    name="perplexity_agent",
    tools=perplexity_tools,
    llm=llm,
)
workflow = AgentWorkflow(
    agents=[linear_agent, clickup_agent, perplexity_agent],
    root_agent="linear_agent",
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their LlamaIndex applications with these MCP servers.

Start For Free