Create powerful AI workflows by connecting multiple MCP servers including Asana, Plai, Mem0 for enhanced automation capabilities in Klavis AI.
Asana is a web and mobile application designed to help teams organize, track, and manage their work. It provides project management tools, task assignment, collaboration features, and progress tracking to boost team productivity
Plai is an AI-powered advertising platform that simplifies creating, managing, and optimizing Facebook, Instagram, and LinkedIn ad campaigns. It provides tools for lead generation, campaign insights, and automated ad management to help businesses scale their digital marketing efforts effectively.
Mem0 is an intelligent memory layer for AI applications that provides long-term memory storage and retrieval. Store code snippets, implementation details, and programming knowledge for seamless context retention across conversations
Follow these steps to connect OpenAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to OpenAI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ASANA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
plai_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.PLAI,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
mem0_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MEM0,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
asana_tools = klavis_client.mcp_server.list_tools(
server_url=asana_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
plai_tools = klavis_client.mcp_server.list_tools(
server_url=plai_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
mem0_tools = klavis_client.mcp_server.list_tools(
server_url=mem0_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools)
all_tools.extend(plai_tools)
all_tools.extend(mem0_tools)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}
]
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=all_tools if all_tools else None
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.
Start For Free