Connectto Brave Search, Unified MCP, Exa MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Brave Search, Unified MCP, Exa for enhanced automation capabilities in Klavis AI.

Brave Search icon

Brave Search

featured

Brave Search is a search engine that provides comprehensive web, image, news, and video search.

Available Tools:

  • brave_web_search
  • brave_image_search
  • brave_news_search
  • +1 more tools
Unified MCP icon

Unified MCP

featured

Klavis AI unified MCP server that provides access to multiple tools and capabilities through a single endpoint

Exa icon

Exa

featured

Exa is an AI-powered search engine designed for AI applications. Use neural search to understand meaning and context, find similar content, get direct answers with citations, and conduct comprehensive research with structured analysis

Available Tools:

  • exa_search
  • exa_get_contents
  • exa_find_similar
  • +2 more tools

Quick Setup Guide

Follow these steps to connect OpenAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to OpenAI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

OpenAI + KlavisAI Integration Snippets

import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
OPENAI_MODEL = "gpt-4o-mini"

brave_search_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.BRAVE_SEARCH,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

unified_mcp_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.UNIFIED_MCP,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

exa_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.EXA,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
brave_search_tools = klavis_client.mcp_server.list_tools(
    server_url=brave_search_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
unified_mcp_tools = klavis_client.mcp_server.list_tools(
    server_url=unified_mcp_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
exa_tools = klavis_client.mcp_server.list_tools(
    server_url=exa_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(brave_search_tools)
all_tools.extend(unified_mcp_tools)
all_tools.extend(exa_tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": user_message}
]
        
response = openai_client.chat.completions.create(
    model=OPENAI_MODEL,
    messages=messages,
    tools=all_tools if all_tools else None
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.

Start For Free