Connectto Close, Doc2markdown, Klavis ReportGen MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Close, Doc2markdown, Klavis ReportGen for enhanced automation capabilities in Klavis AI.

Close icon

Close

featured

Close is a modern CRM platform built for sales teams, providing powerful lead management, contact organization, and sales pipeline tracking to help businesses close more deals

Available Tools:

  • close_create_lead
  • close_get_lead
  • close_search_leads
  • +20 more tools
Doc2markdown icon

Doc2markdown

featured

Convert any file to markdown using markitdown

Available Tools:

  • convert_document_to_markdown
Klavis ReportGen icon

Klavis ReportGen

featured

Generate visually appealing JavaScript web reports from search queries with Klavis AI.

Available Tools:

  • generate_web_reports

Quick Setup Guide

Follow these steps to connect OpenAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to OpenAI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

OpenAI + KlavisAI Integration Snippets

import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
OPENAI_MODEL = "gpt-4o-mini"

close_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CLOSE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DOC2MARKDOWN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

klavis_reportgen_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.KLAVIS_REPORTGEN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
close_tools = klavis_client.mcp_server.list_tools(
    server_url=close_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
doc2markdown_tools = klavis_client.mcp_server.list_tools(
    server_url=doc2markdown_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
klavis_reportgen_tools = klavis_client.mcp_server.list_tools(
    server_url=klavis_reportgen_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(close_tools)
all_tools.extend(doc2markdown_tools)
all_tools.extend(klavis_reportgen_tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": user_message}
]
        
response = openai_client.chat.completions.create(
    model=OPENAI_MODEL,
    messages=messages,
    tools=all_tools if all_tools else None
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.

Start For Free