Create powerful AI workflows by connecting multiple MCP servers including Exa, Cal.com for enhanced automation capabilities in Klavis AI.
Exa is an AI-powered search engine designed for AI applications. Use neural search to understand meaning and context, find similar content, get direct answers with citations, and conduct comprehensive research with structured analysis
Cal.com is an open-source scheduling platform that helps you schedule meetings without the back-and-forth emails. Manage event types, bookings, availability, and integrate with calendars for seamless appointment scheduling
Follow these steps to connect OpenAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to OpenAI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
exa_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.EXA,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
cal.com_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CAL.COM,
user_id="1234",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
exa_tools = klavis_client.mcp_server.list_tools(
server_url=exa_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
cal.com_tools = klavis_client.mcp_server.list_tools(
server_url=cal.com_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(exa_tools)
all_tools.extend(cal.com_tools)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}
]
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=all_tools if all_tools else None
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.
Start For Free