Connectto Markdown2doc, Doc2markdown, Calendly MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Markdown2doc, Doc2markdown, Calendly for enhanced automation capabilities in Klavis AI.

Markdown2doc icon

Markdown2doc

featured

Convert markdown text to different file formats (pdf, docx, doc, html), based on Pandoc

Available Tools:

  • convert_markdown_to_file
Doc2markdown icon

Doc2markdown

featured

Convert any file to markdown using markitdown

Available Tools:

  • convert_document_to_markdown
Calendly icon

Calendly

coming soon

Manage scheduling and appointments with your agents.

Quick Setup Guide

Follow these steps to connect OpenAI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to OpenAI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

OpenAI + KlavisAI Integration Snippets

import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

# Constants
OPENAI_MODEL = "gpt-4o-mini"

markdown2doc_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.MARKDOWN2DOC,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DOC2MARKDOWN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

calendly_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.CALENDLY,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get tools from all MCP servers
markdown2doc_tools = klavis_client.mcp_server.list_tools(
    server_url=markdown2doc_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
doc2markdown_tools = klavis_client.mcp_server.list_tools(
    server_url=doc2markdown_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
calendly_tools = klavis_client.mcp_server.list_tools(
    server_url=calendly_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(markdown2doc_tools)
all_tools.extend(doc2markdown_tools)
all_tools.extend(calendly_tools)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": user_message}
]
        
response = openai_client.chat.completions.create(
    model=OPENAI_MODEL,
    messages=messages,
    tools=all_tools if all_tools else None
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.

Start For Free