Create powerful AI workflows by connecting multiple MCP servers including Mixpanel, Tavily, Monday for enhanced automation capabilities in Klavis AI.
Mixpanel is a powerful product analytics platform that helps teams understand user behavior, track events, analyze conversion funnels, measure retention, and make data-driven decisions with real-time insights and advanced segmentation capabilities
Tavily is an AI-powered search API designed for LLMs and AI agents. Get real-time web search results, extract content from URLs, crawl websites, and generate site maps with advanced filtering and parsing capabilities
Monday.com is a work operating system that powers teams to run projects and workflows with confidence. Create boards, manage items, customize columns, organize groups, and collaborate with team members in a visual workspace
Follow these steps to connect OpenAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to OpenAI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
mixpanel_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MIXPANEL,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
tavily_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.TAVILY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
monday_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MONDAY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
mixpanel_tools = klavis_client.mcp_server.list_tools(
server_url=mixpanel_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
tavily_tools = klavis_client.mcp_server.list_tools(
server_url=tavily_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
monday_tools = klavis_client.mcp_server.list_tools(
server_url=monday_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(mixpanel_tools)
all_tools.extend(tavily_tools)
all_tools.extend(monday_tools)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}
]
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=all_tools if all_tools else None
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.
Start For Free