Create powerful AI workflows by connecting multiple MCP servers including Moneybird, Jira, Exa for enhanced automation capabilities in Klavis AI.
Moneybird is an online accounting software for entrepreneurs and small businesses. Manage contacts, create invoices, track time entries, handle financial accounts, and organize projects with comprehensive bookkeeping features
Jira is a project management and issue tracking tool developed by Atlassian
Exa is an AI-powered search engine designed for AI applications. Use neural search to understand meaning and context, find similar content, get direct answers with citations, and conduct comprehensive research with structured analysis
Follow these steps to connect OpenAI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to OpenAI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import json
import os
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
# Constants
OPENAI_MODEL = "gpt-4o-mini"
moneybird_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MONEYBIRD,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
jira_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.JIRA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
exa_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.EXA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get tools from all MCP servers
moneybird_tools = klavis_client.mcp_server.list_tools(
server_url=moneybird_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
jira_tools = klavis_client.mcp_server.list_tools(
server_url=jira_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
exa_tools = klavis_client.mcp_server.list_tools(
server_url=exa_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(moneybird_tools)
all_tools.extend(jira_tools)
all_tools.extend(exa_tools)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}
]
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=all_tools if all_tools else None
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their OpenAI applications with these MCP servers.
Start For Free