Create powerful AI workflows by connecting multiple MCP servers including Airtable, Slack, Plai for enhanced automation capabilities in Klavis AI.
Airtable is a cloud-based database and spreadsheet platform that combines the flexibility of a spreadsheet with the power of a database, enabling teams to organize, track, and collaborate on projects with customizable views and powerful automation features
Slack is a messaging app for business that connects people to the information they need
Plai is an AI-powered advertising platform that simplifies creating, managing, and optimizing Facebook, Instagram, and LinkedIn ad campaigns. It provides tools for lead generation, campaign insights, and automated ad management to help businesses scale their digital marketing efforts effectively.
Follow these steps to connect Together AI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Together AI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
airtable_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.AIRTABLE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
slack_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.SLACK,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
plai_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.PLAI,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
airtable_tools = klavis_client.mcp_server.list_tools(
server_url=airtable_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
slack_tools = klavis_client.mcp_server.list_tools(
server_url=slack_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
plai_tools = klavis_client.mcp_server.list_tools(
server_url=plai_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(airtable_tools.tools)
all_tools.extend(slack_tools.tools)
all_tools.extend(plai_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = together_client.chat.completions.create(
model="meta-llama/Llama-2-70b-chat-hf",
messages=messages,
tools=all_tools
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Together AI applications with these MCP servers.
Start For Free