Create powerful AI workflows by connecting multiple MCP servers including Asana, Close, Perplexity for enhanced automation capabilities in Klavis AI.
Asana is a web and mobile application designed to help teams organize, track, and manage their work. It provides project management tools, task assignment, collaboration features, and progress tracking to boost team productivity
Close is a modern CRM platform built for sales teams, providing powerful lead management, contact organization, and sales pipeline tracking to help businesses close more deals
Perplexity is an AI research assistant that provides accurate answers and cites sources
Follow these steps to connect Together AI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Together AI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
asana_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.ASANA,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
close_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.CLOSE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
perplexity_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.PERPLEXITY,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
asana_tools = klavis_client.mcp_server.list_tools(
server_url=asana_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
close_tools = klavis_client.mcp_server.list_tools(
server_url=close_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
perplexity_tools = klavis_client.mcp_server.list_tools(
server_url=perplexity_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(asana_tools.tools)
all_tools.extend(close_tools.tools)
all_tools.extend(perplexity_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = together_client.chat.completions.create(
model="meta-llama/Llama-2-70b-chat-hf",
messages=messages,
tools=all_tools
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Together AI applications with these MCP servers.
Start For Free