Create powerful AI workflows by connecting multiple MCP servers including Gong, Resend, Motion for enhanced automation capabilities in Klavis AI.
Gong is a revenue intelligence platform that captures and analyzes all revenue-related interactions to help sales teams close more deals. It provides conversation analytics, deal insights, and sales performance tracking through call recordings and transcripts
Resend is a modern email API for sending and receiving emails programmatically
Motion is an intelligent project management and calendar application that automatically schedules your tasks, meetings, and projects to optimize your productivity and help you focus on what matters most
Follow these steps to connect Together AI to these MCP servers
Sign up for KlavisAI to access our MCP server management platform.
Add your desired MCP servers to Together AI and configure authentication settings.
Verify your connections work correctly and start using your enhanced AI capabilities.
import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))
gong_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GONG,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
resend_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.RESEND,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
motion_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.MOTION,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
# Get all MCP tools
gong_tools = klavis_client.mcp_server.list_tools(
server_url=gong_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
resend_tools = klavis_client.mcp_server.list_tools(
server_url=resend_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
motion_tools = klavis_client.mcp_server.list_tools(
server_url=motion_mcp_instance.server_url,
connection_type=ConnectionType.STREAMABLE_HTTP,
format=ToolFormat.OPENAI,
)
# Combine all tools
all_tools = []
all_tools.extend(gong_tools.tools)
all_tools.extend(resend_tools.tools)
all_tools.extend(motion_tools.tools)
messages = [
{"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
{"role": "user", "content": user_message}
]
response = together_client.chat.completions.create(
model="meta-llama/Llama-2-70b-chat-hf",
messages=messages,
tools=all_tools
)
Everything you need to know about connecting to these MCP servers
Join developers who are already using KlavisAI to power their Together AI applications with these MCP servers.
Start For Free